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Abstract

The Internet of Things (IoT) is enabling a new generation of innovative services based on the
seamless integration of smart objects into information systems. This raises new security and pri-
vacy challenges that require novel cryptographic methods. Attribute-Based Encryption (ABE)
is a type of public-key encryption that enforces a fine-grained access control on encrypted data
based on flexible access policies. The feasibility of ABE adoption in fully-fledged computing
systems, i.e., smartphones or embedded systems, has been demonstrated in recent works. In this
paper, we consider IoT devices characterized by strong limitations in terms of computing, stor-
age, and power. Specifically, we assess the performance of ABE in typical IoT constrained de-
vices. We evaluate the performance of three representative ABE schemes configured considering
the worst-case scenario on two popular IoT platforms, namely ESP32 and RE-Mote. Our results
show that, if we assume to employ up to 10 attributes in ciphertexts and to leverage hardware
cryptographic acceleration, then ABE can indeed be adopted on devices with very limited mem-
ory and computing power, while obtaining a satisfactory battery lifetime. In our experiments, as
also performed in other works in the literature, we consider only the worst-case configuration,
which, however, might not be completely representative of the real working conditions of sensors
employing ABE. For this reason, we complete our evaluation by proposing a novel benchmark
method that we used to complement the experiments by evaluating the average performance. We
show that by always considering the worst case, the current literature significantly overestimates
the processing time and the energy consumption.
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1. Introduction

Recent advancements in wireless communication standards and embedded computing are
fostering the creation of novel smart computing systems, which are rapidly getting real in hetero-
geneous contexts, from personal to industrial. A crucial enabling technology will be the Internet
of Things (IoT), which refers to the multitude of heterogeneous smart objects seamlessly inte-
grated into computing platforms. These IoT devices represent the bridge between the physical
and the cyber worlds and enable novel functionalities, such as remote monitoring and big data
collection for intelligent control and optimization [1, 2].
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G. Anastasi, ”On the Feasibility of Attribute-Based Encryption on Constrained IoT Devices for Smart Systems,” 2019
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The majority of IoT devices are resource constrained, i.e., characterized by scarce capabilities
and features. IoT devices are typically implemented through low-cost embedded systems that
have reduced computing and storage capabilities and are often battery powered. The scarcity
of resources on those devices is currently driving the definition of specific network protocols
that can accommodate the reduced features offered by them. An example is the Constrained
Application Protocol (CoAP) [3], which is an application protocol tailored to allow applications
to communicate with constrained devices.

In order to compensate the limited capabilities of IoT devices, more complex architectures
are usually put in place, to allow the implementation of advanced services on top of the function-
alities they offer. IoT systems are usually implemented in a multi-layered fashion, in which IoT
devices are integrated into cloud-computing platforms. Intermediate devices such as gateways or
brokers are usually installed in order to implement functionalities like protocol translation, data
dispatching, or to support the execution of simple applications that require proximity with the
IoT devices due to time constraints.

In this complex architecture, data generated by IoT devices can be processed by multiple
heterogeneous entities, which can be either different applications interested in analyzing the data
or the above mentioned intermediate entities. In this context, novel encryption mechanisms are
required to enforce security and guarantee a fine-grained access control over data. The latter, in
particular, is an important requirement to tune the amount of information that can be accessed
by each entity handling the data. For instance, while applications should have complete access
to the data generated by IoT devices, an intermediate entity, like a broker, should have access
only to the minimum set of information required to implement its functionalities [4]. Current
security methods adopted in IoT are based solely on encrypted channels between the broker and
the IoT devices, plus optionally an access control mechanism enforced by the broker. Secure
channels however do not avoid the broker to access to all data in the clear, and thus an attacker
that compromises the broker is able to jeopardize the confidentiality of the whole communication
system.

Attribute-Based Encryption (ABE) is a public-key encryption technique that encrypts data
and at the same time enforces a fine-grained access control on it based on flexible access policies.
Broadly speaking, with ABE a source can encrypt data by using a set of attributes, and only those
destinations that fulfill an access policy defined over such attributes can decrypt data afterwards.
Unlike classic access control techniques, ABE mathematically enforces the access policy, in such
a way that only authorized entities are able to decrypt data. As a consequence, ABE allows the
broker to manage only encrypted data, so that an attacker compromising the broker cannot break
data confidentiality. ABE adoption is foreseen as a crucial technique to handle many security
issues in different scenarios, ranging from healthcare systems [5, 6] to smart city [7, 8] and smart
home [9] services, from financial industry [10] to on-line social networks [11].

The academic literature has partially assessed the feasibility of adopting ABE in different
contexts, from fully-fledged embedded IoT systems [12] to smartphones [13]. Its adoption in
constrained IoT devices, instead, has not been investigated so far. Understanding the feasibility
limits of adopting ABE in constrained IoT devices allows us to understand its current applicabil-
ity to a vast range of IoT applications. In this work we carry out an extensive evaluation of ABE
performance in constrained IoT devices. Specifically, we assess the performance of different
ABE schemes on different devices with different memory and computational capabilities. We
implemented three representative ABE schemes and test their performance on two popular IoT
platforms, the ESP32 and the RE-Mote platforms. We selected these two IoT platforms for the
evaluation as they are representative of the devices currently available in the market. The ABE
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schemes have been configured considering a worst-case scenario, often adopted in literature, in
order to check the feasibility of adopting ABE on constrained devices in the most challenging
conditions. Our performance evaluation shows that ABE has a significant impact on the lifetime
of battery-powered devices, especially when a high number of attributes (i.e., 20-50) is used in ci-
phertexts. However, if we assume to employ fewer attributes (up to 10) and to leverage hardware
elliptic-curve cryptographic acceleration, which is present on some platforms (e.g., RE-Mote),
then ABE can indeed be adopted on devices with very limited memory and computing power.
We also obtain a significant, yet tolerable, battery lifetime reduction.

The worst-case configuration considered in our experiments is often adopted in literature,
however, it might not be completely representative of the real working conditions of sensors em-
ploying ABE, as ABE configuration adopted in real use cases can often give better performance
than the worst-case configuration. For this reason, we propose a novel benchmark method that
allows us to estimate the average performance with a better accuracy with respect to the worst-
case analysis. Our benchmark method is applicable to any ABE scheme, and it provides for a
more realistic performance evaluation because it captures the average case. We exploited such a
method to complete our evaluation. We show that the worst-case analysis significantly overesti-
mates the processing time and energy. For example, with RE-Mote under some configurations,
the energy consumption estimated from the average case is 67% less than that estimated from
the worst case.

This paper is an extended version of a conference paper [14]. Compared with our conference
work, the preliminary analysis has been extended as follows: (i) an additional IoT platform
has been considered, the RE-Mote platform, to make the range of tested IoT platforms more
representative by considering devices characterized by very limited memory capabilities and
capable of hardware support for some of the cryptographic operations required to implement
ABE schemes; (ii) a novel benchmark method to estimate the average-case performance has
been introduced and used to complete our evaluation.

The rest of the paper is organized as follows. Section 2 presents some background on ABE.
Section 3 overviews related work. Section 4 introduces a set of reference use cases and threat
models. Section 5 introduces the hardware platforms and the methodology adopted in our exper-
iments. Section 6 presents the experimental results for the ESP32 and the RE-Mote platforms.
Section 7 presents the novel benchmark method for estimating the average-case time and energy
consumption and the results obtained with it. Finally, Section 8 concludes the paper.

2. Attribute-Based Encryption

Attribute-Based Encryption (ABE) [15, 16, 17, 18] is a cryptography paradigm which allows
one to encrypt a message in such a way that only a set of authorized parties can decrypt it after-
wards. Such an authorization is expressed through an access policy, which is a Boolean function
evaluated on some attributes. ABE can be viewed as a self-enforcing fine-grained access control
mechanism based on cryptography. Moreover, it is a public-key encryption technique, in the
sense that the key used for encrypting (encryption key) can be public, thus allowing everyone to
encrypt. The keys used for decrypting (decryption keys) are instead private and unique for each
party. An access policy can be expressed by means of a tree (policy tree), in which leaves rep-
resent attributes (Boolean arguments), while internal nodes represent “AND” and “OR” Boolean
operators. The “NOT” operator is not permitted in the majority of ABE schemes, which thus
allow only for monotonic access policies (see [19] for an exception). At decryption time, the ac-
cess policy is evaluated with an attribute set as argument. The attribute set includes all the “true”
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Fig. 1: Example of realistic policies and attribute sets for KP-ABE (a) and for CP-ABE (b).

attributes. All the attributes excluded from the attribute set are implicitly considered “false”.
If the access policy evaluates to true, then data will be decryptable, otherwise data will not be
decryptable.

Two main ABE paradigms have emerged in the literature, namely, Key-Policy ABE (KP-
ABE) and Ciphertext-Policy ABE (CP-ABE). In the KP-ABE paradigm [16], the access policy is
associated to the decryption key, and the attribute set is associated to the ciphertext. Thus, the
attribute set semantically describes data. The KP-ABE paradigm can be viewed as a system that
tags data with attributes, and then it gives users a “ticket” that tells which data (s)he can decrypt
and which not. On the other hand, in the CP-ABE paradigm [17], the access policy is associated
to the ciphertext, and the attribute set is associated to the decryption key. Thus, the attribute set
semantically describes a decrypting user. The CP-ABE paradigm can be viewed as a system that
tags each user with a set of attributes, and then it associates an access policy to each piece of
data.

All the KP-ABE and CP-ABE schemes implement at least the following algorithms: Setup,
KeyGen, Encrypt, and Decrypt. In both KP-ABE and CP-ABE paradigms the Setup algorithm
generates a master key MK and an encryption key EK. The KeyGen algorithm generates a
decryption key DK. In KP-ABE schemes, such an algorithm takes as input the master key and
an access policy T , which describes the owner of the generated decryption key. In CP-ABE
schemes, it takes as input the master key and an attribute set γ, which describes the owner of
the generated decryption key. The Encrypt algorithm generates a ciphertext C. In KP-ABE
schemes, such an algorithm takes as input the encryption key, a message M, and an attribute set
γ, which describes the data being encrypted. In CP-ABE schemes, it takes as input the encryption
key, a message M, and an access policy T , which describes the data being encrypted. In both
KP-ABE and CP-ABE paradigms the Decrypt algorithm takes as input a decryption key and a
ciphertext, returning the decrypted message if the attribute set satisfies the access policy.

In Fig. 1 we show a realistic use case in the e-health scenario, described with a KP-ABE
paradigm (Fig. 1a) and a CP-ABE one (Fig. 1b). In both paradigms, the key describes a physician
working at the Cardiology department of the Pisa Hospital, who is also involved in an European
Project as a professor. The ciphertext represents some cardiology data retrieved in the Pisa
Hospital, destined to be accessed by nurses, physicians, or professors.

3. Related Work

The application of ABE schemes to implement fine-grained access control and confidentiality
has been already proposed in different contexts, e.g. healthcare [6], smart city [8], financial
industry [10] and on-line social networks [11], but none of these studies focused on assessing
the cost of introducing ABE in practice. Instead, an evaluation of the adoption of ABE has been

4



carried in the following works.
In [20], the authors made the first full benchmark of a KP-ABE scheme and a CP-ABE

scheme in terms of execution time, energy consumption, memory usage, data overhead. Their
benchmark is carried out on a PC-class device (Intel Quad-Core i7 @ 1.60GHz) and a mobile
device (Intel Atom Z2460 @ 1.60GHz smartphone). In [13], the authors evaluated the feasibility
of adopting ABE on smartphone devices. Specifically, the authors developed an ABE library for
the Android operating system, and then they evaluated its performance by means of real experi-
ments. In [21], the authors carried out a comprehensive analysis of different ABE schemes, with
respect to their application for decentralized secure data sharing. In particular, they performed
a realistic estimation of the resource consumption and workload exploiting real-world system
traces. Their evaluation considered heterogeneous devices, namely a laptop and a smartphone.

The results of [13, 20, 21] confirmed the possibility of using ABE on laptops and smart-
phones, showing that such devices have an acceptable amount of resources to implement ABE
schemes and the resulting energy cost is acceptable. The following works focused instead on
more constrained devices. In [4], the authors surveyed the various existing implementations of
ABE schemes and, as a side contribution, they perform a benchmark on a single-board computer
(Raspberry Pi 2 @ 900MHz) of various ABE schemes with the Charm library, used for fast pro-
totyping of cryptographic schemes. Similarly, in [12] the authors assess the feasibility of using
ABE in single-board computers, namely Raspberry Pi and Intel Edison. Experimental results
demonstrate that exploiting ABE in such systems is feasible, although they also highlight that
future works should focus on improve its efficiency. Notably, the authors of [4] and [12] do not
focus on actually constrained IoT devices, but on more powerful platforms that have resources
comparable with smartphone devices. Specifically, single-boards computers like Raspberry Pi
and Intel Edison have enough resources to run a fully-fledged operating system. However, it is
not clear from their results whether ABE schemes are feasible on far more constrained devices,
which is the focus of our work.

In this paper we consider constrained devices with significantly less memory/computing ca-
pabilities, i.e. boards equipped with a microcontroller with less than 1MB of RAM. Those de-
vices, very popular in IoT solutions, cannot support the execution of a fully-fledged OS and
usually run an ad-hoc OS with limited features. Our analysis shows that, if we assume to employ
simple access policies and to leverage hardware elliptic-curve cryptographic acceleration, then
ABE can indeed be adopted on devices with very limited memory and computing power.

As a final note, all the previous papers [20, 4, 13, 12, 21] evaluate the decryption performance
considering the worst-case scenario of policies using only “AND” operators. In this paper we
show that when relying on worst-case decryption, the processing time and the energy consump-
tion are significantly overestimated. We thus propose a novel benchmark method that allows us
to evaluate the average decryption performance, instead of the worst-case one, complementing
our experimental analysis.

4. Use Case

A popular application scenario for ABE that largely involves constrained devices is the med-
ical field. Future medical systems will largely adopt Wireless Body Area Networks (WBANs)
[6] to collect data. Patients that require continuous monitoring, for instance, will be equipped
with wearable and/or implantable sensors, which collect biometric parameters for real-time mon-
itoring, e.g. to ensure a rapid response in case of an emergency or automate the administration
of treatments. These WBANs produce highly-sensible data, which is consumed by other con-
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Fig. 2: Publish/subscribe architecture and mechanism

strained devices, e.g. an insulin pump that analyzes data from other biomedical sensors to select
the proper dose, or by humans, e.g. a doctor that remotely checks the status of a patient. In
this context, data should be protected from unauthorized accesses by means of encryption. How-
ever, since multiple recipients are involved, a fine-grained access control is mandatory to regulate
which piece of information can be accessed by which user or device of the system. For instance,
a glucose sensor can be programmed to encrypt its measurements in order to allow only the
insulin pump and the patient’s physician to access them.

In such applications, the information is often shared using a publish/subscribe system. Pub-
lish/subscribe is a common information-flow pattern adopted by different IoT application proto-
cols, such as the Message Queue Telemetry Transport (MQTT) protocol [22] and the Constrained
Application Protocol (CoAP) [23], to decouple the producer of information to the consumer.
The overall architecture of a publish/subscribe system is depicted in Fig. 2(a). On one side, we
have a set of constrained IoT devices, e.g. sensors or actuators, and users that behave as pub-
lish/subscribe clients and produce and consume messages, e.g. periodic updates on a physical
measurement. On the other side, we have a broker, which is a full-resource device that is respon-
sible for receiving, storing and dispatching messages. An IoT device or a user that is interested
in receiving messages on a given topic contacts the broker to issue a subscription to that topic
(Fig. 2(b)). Every time an IoT device generates new data for a given topic, it sends a message to
the broker. The broker is responsible for dispatching messages to all the subscribers (Fig. 2(c)).
This approach allows us to overcome the main limitations that characterize constrained IoT de-
vices. First, their limited capabilities in terms of memory and computational power allow them
to interact only with one application at a time. The adoption of a broker, instead, allows such de-
vices to be used by multiple applications at the same time, thanks to the dispatching capabilities
of the broker. Secondly, the publish/subscribe architecture facilitates the communication with
battery-powered IoT devices. In order to minimize the energy consumption, such devices should
often operate in power-saving mode in which they turn off their radio. In a publish/subscribe
architecture, the broker can store the generated messages, thus allowing the IoT devices to go in
sleep mode, without compromising information availability.

The core of this architecture is the broker, which can access all the messages. Such entity
is often outsourced, i.e. it is deployed on an external infrastructure, e.g. a cloud computing
platform, or is completely operated by external entities, e.g. cloud computing providers, which
offer MQTT brokers as a service to customers. For those reasons, a broker is not only subject to
external attackers, but it could be directly managed by an untrusted third party.
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Fig. 3: Malicious broker with traditional ABAC mechanism (a) and with ABE (b)

In this context, we consider an adversary capable to compromise the broker. However, it is
worth to highlight that the same considerations apply if the broker’s owner tries to access data
dispatched by the broker itself. Thus, hereafter we refer to a broker that is either compromised or
owned by an untrusted third party server, as a malicious broker. A traditional ABAC mechanism
enforced by the broker would have exposed data to a confidentiality risk in case of a malicious
broker. This is due to the fact that those “classic” security systems are based entirely on secure
channels (e.g. TLS), in which the broker establishes a secure channel with each entity involved
in the architecture. In such systems, the broker can access all the messages, thus it is a single
point of trust, as shown in Fig. 3(a).

With ABE, instead, a malicious broker cannot do much, since it stores and dispatches mes-
sages in an encrypted fashion, so that the broker is not able of decrypting them (see Fig. 3(b)).
Such a resistance to this adversary is given by ABE itself: ABE ensures that the broker has access
only to metadata, e.g. the data type or the topic, but not to the data itself, which is stored and
dispatched by the broker in an encrypted form.

Note that ABE does not preclude the possibility to use also secure channels, for example
as a means of authenticating the messages. In addition to this, ABE enforces a fine-grained ac-
cess control on encrypted data, thus preventing malicious or compromised applications to access
unauthorized data.

5. Experimental Setup

In this section we present the experimental setup adopted for our performance evaluation.
Specifically, in the followings, we first introduce our reference ABE schemes, the adopted hard-
ware and software platforms, and then we present the methodology.

5.1. Reference ABE Schemes

In this paper we focus on three representative ABE schemes, namely: (i) the Goyal-Pandey-
Sahai-Waters scheme [16]1 (throughout referred to as “GPSW”, for brevity), which has been
the first proposed KP-ABE scheme in the literature; (ii) the Bethencourt-Sahai-Waters scheme
[17] (“BSW”), which has been the first proposed CP-ABE scheme in the literature; and (iii) the
Yao-Chen-Tian scheme [18] (“YCT”), which is a quite recent KP-ABE scheme for IoT devices
focused on encryption and decryption efficiency.

1In the cited paper, the authors actually present two schemes, offering respectively a small and a large attribute
universe. We refer to the first one, which is the most lightweight of the two, thus suitable for very constrained devices.
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In all the three considered schemes, the most expensive operation performed by the encryp-
tion algorithm is the point-scalar multiplication, which is an elliptic-curve operation (see [24] for
details). In particular, the GPSW and the YCT schemes perform one point-scalar multiplication
for each attribute in the attribute set. The BSW scheme performs two point-scalar multiplications
for each leaf in the policy tree, and for each internal node of the policy tree, the BSW scheme
creates a random polynomial of zero degree if the node is an OR operator, or degree equal to the
number of children minus one if the node is an AND operator. Furthermore, the BSW scheme
also performs a hashing of each attribute name on an elliptic-curve group as a first stage of the
encryption operation. Since this hashing operation has a non-negligible impact on encryption
performance, and since it can be easily precomputed given the set of attribute names that the en-
crypting device uses, we chose not to include the hash operations in our performance evaluation.
In both GPSW and BSW schemes, the most expensive operation performed by the decryption
algorithm is the bilinear pairing, which is a quite expensive cryptographic operation (see again
[24] for details). Remind that the decryption algorithm does not have to visit all the nodes of
the tree, but only a subset of them necessary to reach the root. The GPSW scheme performs
one bilinear pairing for each visited leaf in the policy tree. On the other hand, the YCT scheme
does not use bilinear pairing, so it is more efficient than GPSW. The YCT scheme performs one
point-scalar multiplication for each visited leaf in the policy tree. The BSW scheme performs
two bilinear pairings for each visited leaf in the policy tree.

5.2. Hardware and Software Platforms

As an example of constrained IoT devices, in our experiments we exploited the ESP32
and the RE-Mote boards. We have chosen those two IoT platforms as they are representative
of two different categories of IoT devices currently available in the market, i.e., very con-
strained devices (like the RE-Mote board) designed to operate on batteries characterized by
scarce memory/computing capabilities and equipped with a ultra low-power wireless transceiver
(e.g. IEEE 802.15.4) and constrained devices with slightly more memory and computing capa-
bilities equipped with a WiFi transceiver (like the ESP board).

The ESP32 [25] is an IoT platform produced by Espressif Systems that is growing in pop-
ularity due to its low cost, high availability and rich set of features. A dual-core Xtensa LX6
microprocessor at 240 MHz designed to have ultra low-power consumption is the core of the
system. The board is equipped with 520 KB of SRAM and 448 KB of programmable ROM. It
includes both WiFi and Bluetooth connectivity to accommodate a wide range of IoT use cases.
The chip includes some cryptographic hardware acceleration support, namely for AES, SHA2,
RSA algorithms. Unfortunately, it does not provide hardware acceleration for elliptic-curve cryp-
tography (ECC) algorithms, which are the most burdensome ones in ABE. The board is natively
supported by FreeRTOS 2. FreeRTOS is a popular Operating System (OS) for embedded devices
which supports a wide range of microcontrollers. It is written in the C language and provides
support for multi-threaded programming. Compared with fully-fledged OSs, FreeRTOS lacks
support for many advanced features and includes only a basic support for memory management
and networking operations. A basic support for cryptographic operations is included, such as the
popular wolfSSL library.

The RE-Mote [26] is a platform jointly designed by universities and industrial partners and
produced by Zolertia, which targets industrial-grade design and ultra-low power consumption.

2FreeRTOS, https://www.freertos.org, accessed: 2019-12-06
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Table 1: ESP32 and RE-Mote specifics

ESP32 RE-Mote
CPU Tensilica Xtensa dual-core LX6 microprocessor, operating at 240 MHz ARM Cortex-M3, operating at 32 MHz
Radio Wi-Fi: 802.11 b/g/n - Bluetooth: v4.2 BR/EDR and BLE IEEE 802.15.4 (ISM 2.4-GHz and 863-950-MHz) & Zigbee
RAM 448 KB flash and 520 KB RAM 512 KB flash and 32 KB RAM

The board is equipped with the Texas Instruments CC2538 ARM Cortex-M3 System on Chip
(SoC) working at 32 MHz and it can provide ECC hardware acceleration, i.e., it can accelerate
point-scalar multiplication and point addition. Note that many other SoCs provide ECC hard-
ware acceleration for standard elliptic curves only, which cannot be used for ABE, and thus they
are useless for our aims. In contrast, the CC2538 SoC can accelerate the generic elliptic curve,
including those suitable for ABE (paring-friendly curves), and thus it can be exploited to boost
ABE operations. The RE-Mote board has native support for different OSs for IoT devices, in-
cluding the Contiki-NG OS 3. Compared to ESP32, RE-Mote offers a comparable programmable
ROM size (512 KB), but it has a smaller SRAM size (32 KB), which makes storing of cryptog-
raphy information on device challenging.

A summary of the specifications of the two adopted boards is reported in Table 1.
To carry out our performance evaluation, three existing libraries for Linux OS implementing

the three considered ABE schemes have been ported to FreeRTOS and Contiki-NG, namely, the
libcelia library 4 which implements the GPSW scheme, the libbswabe library 5 which imple-
ments the BSW scheme, and the kpabe-yct14 library 6 which implements the YCT scheme. We
configured all the three libraries to use pairing-friendly elliptic curves with embedding degree 2
and with effective security strength of 80 bits, which is equivalent to a 1024-bit RSA encryption.
The libraries have been modified in order to suit the features offered by FreeRTOS and Contiki-
NG. Specifically, the major modifications consisted into: (i) removing any usage of GLib, which
is unavailable in both OS, and (ii) adapting the code to use the wolfSSL library on FreeRTOS and
mbedTLS library on Contiki-NG7 instead of the more popular OpenSSL, which is not supported
on FreeRTOS and Contiki-NG.

5.3. Methodology

In order to assess the performance of the three considered ABE schemes on ESP32 and
RE-Mote, three simple main programs, one for each library, have been developed to perform a
sequence of operations. After the initial Setup algorithm which generates a master key and an
encryption key, the program generates a decryption key with the KeyGen algorithm. Then, it
creates a random 4-byte string that emulates the message to be transmitted. After that, the pro-
gram encrypts the message and subsequently decrypts it. For each operation the program prints a
message over the serial connection. This allows us to measure the time required to perform every
operation. In order to measure the energy consumption, a high precision USB power meter is
adopted. Specifically, we used the AVHzY USB Power Meter Tester8, which supports automatic
data collection from an attached PC and allows measurements with a resolution of 10−15 mWh.

3Contiki-NG, https://contiki-ng.org/, accessed: 2019-12-06
4Libcelia library: https://bit.ly/33lESZN, accessed: 2019-12-06
5Libbswabe library: https://bit.ly/2QRtEJV, accessed: 2019-12-06
6Kpabe-yct14 library: https://bit.ly/2DeJCWy, accessed: 2019-12-06
7Two different TLS/SSL libraries for the two ESP32 and RE-Mote implementations have been considered considering

their availability on the FreeRTOS and Contiki-NG OSs, respectively.
8Power Meter Tester product page: https://goo.gl/vQDyac
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The comparison between the log from the board and the readings from the power meter allowed
us to measure the energy consumed for each specific operation.

To evaluate the three ABE schemes we considered the following metrics:

• Encrypton/decryption time (s), defined as the time required to execute an Encrypt/Decrypt
algorithm.

• Encrypton/decryption energy consumption (mWh), defined as the overall energy consumed
by the board to execute an Encrypt/Decrypt algorithm.

An increasing number of attributes, from 5 to 50, has been considered for encryption. Such a
number represents the number of leaves in the policy tree for the CP-ABE scheme (BSW), or
the size of the attribute set for the KP-ABE schemes (GPSW and YCT). These two quantities
have not the same meaning, because the leaves of a policy tree represent the formal arguments
of the policy, whereas the attribute set represents the actual arguments used to evaluate a policy.
However, they both give a measure of the complexity of the access control rules involved in
an application. For each experimental scenario, 10 independent replicas of the experiment have
been executed. Our results report the average value of the measurements and the 95% confidence
interval. Note that the number of replicas and the number of configurations in terms of attribute
number considered in our experiments are limited. This is due to the fact that some steps for the
execution of the experiments cannot be automated, thus greatly increasing the time required for
their execution. Regarding the number of the replicas, 10 replicas should however be enough to
get statistically sound averages, due to the small variability of the results. This is suggested also
by the very small confidence interval, which are almost unnoticeable in the plots.

As mentioned in Section 2, the number of operations performed by the Decrypt algorithm
grows up linearly with the number of visited leaves and the number of visited internal nodes
(including the root). This means that policies with the same number of leaves but a different
“shape” can perform differently. We shaped the access policies as flat policies, with a single
internal node (the root) associated to an AND operator, and many child nodes, one for each
attribute. Fig. 4 shows an example of flat policy. Flat policies represent the worst case for
decryption algorithms. Indeed, with a flat policy the Decrypt algorithm is forced to visit all the
leaves of the policy tree, and the leaf visit is generally the most expensive operation in decryption.
In some experiments, we also used access policies shaped as 3-level policies. A 3-level policy
is semantically equivalent to a flat policy, but it has an additional intermediate level between the
leaves and the root. The nodes in this intermediate level are AND operators, and they have no
more than two leaves as children. Hence, the root has only dn/2e child nodes, where n is the
number of leaves, opposed to n child nodes of a flat policy. Fig. 5 shows an example of 3-level
policy, which is equivalent to the flat policy shown in Fig. 4. The 3-level policies are useful to
test algorithms whose efficiency depends on the average number of children of internal nodes.
Indeed, the internal nodes in a 3-level policy have in general fewer children than those in the
equivalent flat policy.
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5.3.1. Drawbacks of Flat and 3-Level Policies
Intuitively, results measured by using flat and 3-level policies give an overestimation of ABE

resource consumption, since both types of policy are by definition the decryption’s worst case
scenario. However, in the real world, policies should be much more diverse, as they reflect the
complexity of a human’s access rights (KP-ABE), or they describe the vast range of entities that
can access a single piece of information (CP-ABE). In practice, this variety and flexibility is
rendered by building access policies using also OR gates. Such gates drastically diminish the
number of nodes and leaves that need to be evaluated to satisfy a policy, therefore decreasing
time, resources, and energy depleted by the sensors. Now, we anticipate the basic idea behind
the average-case scenario (analyzed in Section 7), which allows us to estimate decryption per-
formance more realistically. The average-case performance is measured by randomly generating
many access policy/attribute set couples –ensuring for each couple that the generated attribute
set satisfies the generated policy–, and then performing a decryption operation upon each cou-
ple. As in the worst case, we analyze the decryption time and the energy consumption needed
to perform the decryption operation, so that we can compare the results with the ones obtained
considering the worst-case scenario. To do this, we perform decryption over several thousands of
different access policy/attribute set couples. The average-case scenario and the results achieved
accordingly to it are thoroughly described in Section 7.

6. Experimental Results

In this section we present the results of our experiments. We first discuss the results obtained
with the ESP32 boards, and then we analyze the results obtained with the RE-Mote boards.

6.1. Results with ESP32 Boards

6.1.1. Encryption Time and Energy Consumption
Figs. 6 and 7 show the encryption time and the encryption energy consumption of the three

considered schemes, as a function of the number of involved attributes. Note that, as we said
before, such “involved attributes” assume a different meaning in CP-ABE schemes (i.e., BSW)
and in KP-ABE schemes (i.e., GPSW and YCT). In this figure and the following ones, we put
them in the same X axis for the mere reason of saving space, but this should not be interpreted
as a comparison between CP-ABE and KP-ABE schemes. As expected, the GPSW and the YCT
schemes exhibit similar behavior, since they both perform one point-scalar multiplication for
each attribute in the attribute set. The BSW scheme is quite expensive in encryption, in terms of
both time and energy consumption. This is because it performs two point-scalar multiplications
for each leaf in the policy tree, and it generates a random polynomial for each internal node.

Despite many previous papers on ABE [20, 13, 12] report an encryption time linear on the
number of leaves for the BSW scheme, we actually experienced an over-linear time. This is
mainly due to the random polynomial generation that the BSW scheme performs for each internal
node of the policy tree. The complexity of generating such a random polynomial grows in an
over-linear fashion with respect to the number of children of the internal node. To confirm this,
we re-shaped the flat policy into an equivalent 3-level policy, in which each internal node has
fewer children, and run an additional set of experiments with all the considered ABE schemes.
In Figs. 6 and 7 we report the results of the BSW scheme with a 3-level policy. The results
obtained with GPSW and YCT are omitted for the sake of brevity since both execution time and
energy consumption for encryption do not deviate significantly from the results obtained with
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Fig. 6: Encryption time. ESP32 Fig. 7: Encryption energy consumption. ESP32

Fig. 8: Decryption time. ESP32 Fig. 9: Decryption energy consumption. ESP32

the flat policy. This is coherent with the fact that they do not generate random polynomials. As
it can be seen, the encryption time and the encryption energy consumption of the BSW scheme
with a 3-level policy decrease sensibly with respect to the flat policy. This result seems counter-
intuitive since with a 3-level policy there are more polynomials to generate. However, it confirms
that the over-linear cost of BSW encryption is due to the random polynomial generations, which
grow in an over-linear fashion with respect to the number of children of each single internal
node. This also suggests that shaping the policies in many levels is a good practice to improve
the performance of BSW encryption. The reason why the over-linear behavior do not appear
in other previous performance evaluation of ABE available in the literature [20, 13, 12] is that
these papers include also the hashing of the attribute names within the encryption operation.
In our performance evaluation, we do to include the hash operations because the hashes of the
attributes’ names can be precomputed, leading to a noticeable time saving.

6.1.2. Decryption Time and Energy Consumption
Regarding the decryption, Figs. 8 and 9 show the decryption time and energy consumption

of the three considered schemes, as a function of the number of involved attributes, with flat
policies. Interestingly, the YCT scheme is sensibly more efficient than the GPSW scheme in
decryption. This is mainly because it is not based on bilinear pairings, but rather on point-scalar
multiplications, which are less expensive. This suggests us that the GPSW and the YCT schemes
are equivalent in those applications in which IoT devices only produce and encrypt data, for
example in wireless sensor networks. Conversely, where also actuators are involved, and thus
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Fig. 11: Encryption energy consumption. RE-Mote

IoT devices are required to both encrypt and decrypt, the YCT scheme is significantly more
convenient. As expected, the BSW is a quite expensive scheme also for decryption, because
it performs two bilinear pairings for each visited leaf in the policy tree. No over-linear trend
has been observed in BSW decryption, coherently with the fact that no random polynomials are
generated.

Figs. 8 and 9 show also the decryption time and the decryption energy consumption of
the BSW scheme both with flat and 3-level policies. As it can be seen, the decryption time
and energy consumption seem independent of the shape of the policy tree. This confirms that
shaping the policies in many levels is a good practice in the BSW scheme because it improves
the performance of encryption, without decreasing the performance in decryption.

6.2. Results with RE-Mote

6.2.1. Encryption Time and Energy Consumption
Figs. 10 and 11 show, respectively, the encryption time and energy consumption of the three

considered ABE schemes, vs. the number of involved attributes, when using flat policies. Differ-
ently from ESP32, RE-Mote provides ECC hardware acceleration, which can improve ABE per-
formance. Therefore, we carried out experiments with and without ECC hardware acceleration.
In the former case, the hardware support has been exploited to implement the ECC operations,
in the latter one such operations have been implemented via software, as for the experiments
carried out with ESP32. The results obtained with hardware acceleration are represented with
dashed lines. As it can be seen, in some of the experiments the encryption operation failed, as
a certain number of attributes is reached. Specifically the BSW scheme failed when more than
20 attributes were adopted, the GPSW scheme failed with more than 35 attributes. This is due
to the limited amount of SRAM available on the RE-Mote platform, which was not sufficient to
accommodate all the data structures required for the encryption operations.

As expected, the performance of the three ABE schemes exhibits the same trend as that
obtained with ESP32 boards, both in terms of energy consumption end encryption time. By
enabling hardware acceleration, both the encryption time and the corresponding energy con-
sumption reduce significantly. For instance, if we consider the points of maximum reduction,
the execution time is reduced by approximately 70% for BSW obtained with 20 attributes, by
approximately 50% for GPSW obtained with 35 attributes and by approximately 55% for YCT
obtained with 50 attributes. If we compare the results obtained with RE-Mote without ECC
hardware acceleration and the results obtained with ESP32, we can notice that the encryption
time and the encryption energy consumption are higher with RE-Mote. This is expected as the
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microcontroller installed in RE-Mote has a lower frequency than the one installed in ESP32, thus
resulting in higher times (and consequently higher energy consumption) for encryption.

6.2.2. Decryption Time and Energy Consumption
Figs. 12 and 13 show the decryption time and the decryption energy consumption, respec-

tively, for RE-Mote when using flat policies. The GPSW scheme does not benefit from hardware
acceleration. As it can be seen, it does not obtain any performance gain via ECC hardware accel-
eration with respect to the software implementation of such operations. Instead, the YCT scheme
improves its performance, i.e. it reduces the decryption time by 70% with hardware acceleration.
The BSW scheme does not benefit from hardware acceleration either. This is because the BSW
and the GPSW schemes use burdensome bilinear pairing operations in decryption, which are
not accelerated in RE-Mote. Instead, the YCT scheme does not use bilinear pairings, but rather
point-scalar multiplications, which are accelerated. Though some prototypes of bilinear pairing
hardware accelerators have been developed in literature (see [27] for an example), none of them
is commercially available to the best of authors’ knowledge. Therefore, we can expect that de-
cryption operations in pairing-based schemes (BSW and GPSW) do not benefit from hardware
acceleration in any platform currently available in the market.

Also in decryption, the maximum number of attributes is limited by the constrained memory
of RE-Mote. In particular, the number of attributes for which the decryption can be performed
does not exceed 9 and 10, depending on the scheme. When compared to encryption, the maxi-
mum number of attributes is significantly reduced in decryption. This can be explained by taking
into account the larger data structures required by decryption operations with all the considered
ABE schemes.

When devices with low memory are considered, the maximum number of attributes that can
be employed is bounded to the amount of memory available. This is further exacerbated when
data decryption has to be implemented on an IoT device, e.g. in an actuator, as the maximum
number of attributes is significantly lower in this case for all the schemes. With this respect,
YCT is more efficient than GPSW, as the former allows to perform encryption up to 50 attributes.
Furthermore, CP-ABE scheme can also be used by IoT constrained devices.

As regarding the hardware acceleration, in decryption it is only beneficial for the YCT
scheme that is the only scheme that can actually exploit it, since it uses point-scalar multipli-
cations.
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6.3. Battery Lifetime Analysis
In order to better analyze the energy consumption that comes from to the adoption of ABE

schemes and to obtain a key performance indicator that directly evaluates the feasibility of adopt-
ing ABE in a real IoT scenario, we also estimated the lifetime of a battery-powered sensor node,
i.e. the time of operation for the sensor node to exhaust its battery. The battery lifetime resulting
from Figs. 14 and 15 is a simplified measure that does not consider the energy consumption for
all the operations performed by a sensor node. Nevertheless it can be useful as high-level com-
parison between different platforms. The evaluation is performed analytically by exploiting both
the measurements from real experiments and the energy consumption data from the datasheet of
ESP32 [25] and RE-Mote [26].

We consider a scenario in which a battery-powered sensor periodically collects a sample of
a physical measurement, encrypts it using ABE, and then transmits the encrypted message over
a wireless connection. For the sake of brevity, we assume that the device only produces and
encrypts data (i.e., it is a sensor).

In our analysis, both the ESP32 and the RE-Mote boards are assumed to be powered by two
AA 1.5 V batteries, which can provide 2.85 Ah each. The evaluation of the energy consumption
of the sensors included: (i) the overall energy consumed by the sensors for data encryption; (ii)
the energy consumed for the transmission of the encrypted message over WiFi (for ESP32) or
IEEE 802.15.4 (for RE-Mote); (iii) the energy consumed in between two subsequent transmis-
sions, assuming that the sensors remain idle. For the first component we used the measurements
obtained from the real experiments, while for the latter two we exploited the power consump-
tion values from the datasheet. To this aim, for ESP32 we assumed that the radio transceiver
transmits data at 1 Mbps using DSS (Discrete Spread Spectrum) modulation, which results in a
power consumption of 240 mW. RE-Mote, instead, transmits data at 250 Kbps, using again DSS
modulation, and results in a power consumption of 72 mW. Moreover, we assumed that both the
boards, when idle, enters a light-sleep mode, which results in a power consumption of 2.64 mW
for ESP32 and of 1.8 mW for RE-Mote (according to the corresponding datasheets). Finally, a
value of 60 seconds is considered for the sampling period.

Figs. 14 and 15 show the estimated battery lifetime, for the ESP32 and the RE-Mote boards
respectively, expressed in days with respect to the number of involved attributes. As we said in
the previous section, such “involved attributes” assume a different meaning in CP-ABE schemes
(BSW) and in KP-ABE schemes (GPSW and YCT). In this figure and the following ones, we put
them in the same X axis for the mere reason of saving space, but this should not be interpreted
as a comparison between CP-ABE and KP-ABE schemes.

6.3.1. Analysis with the ESP32 board
In Fig. 14, the horizontal red line corresponding to 134 days represents the battery lifetime

of an ESP32 sending data in the clear, i.e. without the cost of any encryption. With fairly small
attribute sets, i.e. 10 attributes, a battery lifetime up to 62 days (54% decrease with respect
to no-encryption scenario) can be obtained with the GPSW and YCT schemes. On the other
hand, with 10-attribute access policies, the BSW scheme experiences a lifetime of around 50
days. As expected, as the number of involved attributes increases, the battery lifetime reduces
proportionally to the energy consumption of all the three ABE scheme. With an attribute set of
50 attributes, the resulting battery lifetime of GPSW and YCT is 25 days. On the other hand,
with 50-attribute policies BSW depletes the battery after few days of use, but we can see that the
use of 3-level policies can improve -although slightly- the performance. The difference between
the flat policy and the 3-level policy in BSW is due to that the over-linear cost of BSW encryption
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is due to the random polynomial generations, which grow in an over-linear fashion with respect
to the number of children of each single internal node. It also suggests that shaping policies
in many levels, while maintaining the same logical meaning, is a good practice to improve the
performance.

6.3.2. Analysis with the RE-Mote board
Fig. 15 shows the battery duration of RE-Mote with flat policies. Again, the horizontal red

line (about 198 days) represents the battery lifetime of a RE-Mote sensor sending data in the
clear. It can be seen that, with 10 involved attributes, the battery lifetime is up to 101 days
(49% decrease) with hardware-accelerated YCT, up to 78 days (61% decrease) with hardware-
accelerated GPSW, and up to 35 days (82% decrease) with hardware-accelerated BSW. As for
ESP32, the battery lifetime reduces proportionally with the number of attributes. If we compare
the results with and without hardware acceleration, we can notice that hardware acceleration
helps in improving the battery lifetime in all the three schemes. This is because the hardware
support reduces the energy consumption for encryption. If we compare those results with the
ones obtained with ESP32, we can note that the adoption of YCT and GPSW leads to the same
battery lifetime on ESP32, but this is not true on RE-Mote. This can be explained by considering
the different payload size of the encrypted message, which is larger with GPSW, and the differ-
ent bitrates of the two wireless technologies. Due to the low bitrate of the IEEE 802.15.4, on
RE-Mote a larger payload results in a longer time-on-air for each transmission, which impacts
noticeably on the battery lifetime. On ESP32, instead, the increased payload has a negligible
impact on the time-on-air due to the higher transmission bitrate of the WiFi, thus resulting in a
comparable battery duration.

6.4. Final Remarks

In our performance evaluation we used two different IoT boards, namely ESP32 and RE-
Mote. The results show that the CP-ABE scheme (BSW) is the most expensive for both of them
in terms of execution time and energy consumption, and this applies either to encryption and
decryption operations. If we compare the results of the ESP32 and the RE-Mote (Figs. 6-13)
without the use of hardware acceleration (only available on RE-Mote), we can conclude that
the power consumption of BSW is much higher with the RE-Mote board. This is due to the
fact that their energy consumption is twice the one of the ESP32 board and they also have a
less powerful microcontroller, thus encryption operations take more time to complete. On the
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other hand, the RE-Mote board can take advantage of the hardware acceleration for encryption
operations, but in the case of the CP-ABE scheme, even though the gain obtained is significant
(i.e. 70%), the power consumption is still in the same order of the ESP32 that cannot exploit
hardware acceleration.

As regarding the KP-ABE schemes (GPSW and YCT), they have the same performance in
encryption whereas in decryption the best performance is obtained with YCT. The hardware ac-
celeration allows the RE-Mote to have encryption execution time and energy consumption in the
same order of the ESP32, and, when possible, it should be exploited to fill the performance gap
given by low frequency microcontrollers. For decryption operations with the RE-Mote board,
instead, the hardware acceleration is beneficial only for YCT, since it uses point-scalar multipli-
cations. It is worth to highlight that due to memory limit in the RE-Mote board, the decryption
cannot be performed if the number of attributes is greater than 10. Thus the RE-Mote board
should not be used if the attributed involved in the ABE policy are greater than 10.

To sum up, although the adoption of ABE has a noticeable cost in terms of energy consump-
tion, the lifetime reduction can still be considered acceptable if we use small attribute sets in
KP-ABE schemes, i.e. up to 20 attributes, and small policies in CP-ABE schemes, i.e. up to 5-
attribute policies. When instead a higher number of attributes is considered, the resulting battery
lifetime is shorten significantly down to a value that could be unacceptable in scenarios in which
a frequent battery replacement is not feasible or desirable. In any case, the use of hardware ECC
acceleration, which is available on some platforms like RE-Mote, helps in prolonging the battery
lifetime too. We finally remark that some optimization techniques that are not considered in our
analysis could be adopted to further improve the sensor battery lifetime. For example, it is often
the case that all the pieces of data periodically transmitted by the sensor must be encrypted with
the same attributes. In this case, the sensor can encrypt a single symmetric key (e.g., a 128-bit
AES key) with ABE, store it on the untrusted broker, and then encrypt all the actual pieces of
data with symmetric encryption, which introduces far less processing and bandwidth overhead
with respect to ABE. This technique is used for instance by [28].

7. Average Decryption Performance Evaluation

In this section we explain the needs and motivations that led us to develop this evaluation
framework as well as the main idea behind it, how it works, and what we want to achieve. This
section is organized in the following way: in Section 7.1 we present the limitations of the main
ABE benchmarks proposed in the literature; in Section 7.2 we show in detail the construction
and use of our framework; in Section 7.3 we argue the plausibility of the synthetic policies; and
finally in Section 7.4 we show the results obtained evaluating the average case with the proposed
method.

7.1. Motivation: Worst Case vs. Average Case

A recurring problem while benchmarking ABE schemes is how to correctly evaluate the
decryption performance. Indeed, while the encryption performance, i.e. time and energy con-
sumption, is quite predictable given the number of attributes in the ciphertext, the decryption
performance highly depends on unpredictable factors, namely the structure of the access policy
and the attribute set. To evaluate the decryption performance, it is a common practice in the liter-
ature [20, 13, 12] to consider the worst case, which corresponds to the flat policy we used in this
paper. However, this worst case is quite infrequent in practice: while it can be useful to validate
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the feasibility of adopting ABE in constrained devices by assessing its performance in the worst-
case scenario, this configuration might be infrequent in a real scenario. Indeed, in a real scenario,
access policies are supposed to have OR operators, and they are supposed to be structured in trees
of many levels. However, it is extremely difficult to find large datasets related to real access poli-
cies and attribute sets used in companies and organizations, upon which evaluate the average
case. This is more than understandable, since those are security-critical information belonging
to the company. For this reasons, we propose a method that allows us to create synthetic access
policies in order to measure the decryption performance of an ABE scheme in the average case.
We believe this approach to be more realistic than testing them in the worst-case scenario, as
done in many previous papers [20, 13, 12] and can be used to complement the experiments and
provide a more comprehensive evaluation.

7.2. Framework Construction

Broadly speaking, the basic idea is to generate many random, but realistic, access policies
and, for each generated policy, generate a random attribute set that fulfills such a policy. Then,
for a KP-ABE scheme, we generate a decryption key associated with each of the access policies
and a ciphertext associated with each of the attribute sets. For a CP-ABE scheme we do vice
versa. Finally, we benchmark the decryption of the ABE scheme with the generated decryption
keys and ciphertexts and we average the results, thus obtaining the decryption performance in
the average case.

More in detail, we generate a random policy having n attributes according to the following
steps.

1. We assign a conventional name to each of the n attributes, say A, B, etc., we build a leaf
for each attribute, and we fill a parent-less node set N with all these leaves. Thorough the
algorithm, the parent-less node set will contain the nodes of the policy we are creating that
do not have a parent node yet. Since at this stage the random policy is still a collection
of unstructured leaf nodes, the parent-less node set contains all of them. At the end of the
algorithm, the random policy will be a tree and the parent-less node set will contain only
the root.

2. We randomly select each node in the parent-less node set with a given probability pc, and
we define the set of selected nodes asNc. IfNc contains less than two nodes we repeat the
node selection procedure, until at least two nodes have been selected.

3. We build a new node having the nodes in Nc as children, and we assign a conventional
name to it, say N1. The nodes created in the successive iterations of the algorithm will be
N2, N3, etc. We choose the Boolean operation associated to the new node to be AND with
a given pAND probability, or OR with 1 − pAND probability.

4. We modify the parent-less node set by removing the nodes inNc and adding the new node.

5. If the parent-less node set now contains only one node (|N| = 1), we terminate the algo-
rithm. The random policy is fully built. Otherwise, we repeat from Step 2.

The parameter pc ∈ (0, 1] influences how many children each node has on average, and thus the
average height of the generated policy tree. The higher pc is, the more nodes will be selected at
each algorithm iteration, so the final policy will be more “flat”. By choosing pc = pAND = 1, the
method always generates flat policies, which represent the worst case for decryption.
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Fig. 16: Example of random policy and random fulfilling attribute set, and a possible attribute interpretation considering
a medical scenario

After the random policy is generated, in order to perform a decryption operation we need to
generate a random attribute set that fulfills the policy. We do it in the following way.

1. We select randomly each attribute in the n attributes used in the previous algorithm with
probability pa.

2. If the selected attributes fulfill the synthetic policy, we terminate the algorithm. The at-
tribute set is fully built. Otherwise, we repeat from Step 1.

The parameter pa ∈ (0, 1] influences how many attributes are included in the attribute set. The
higher pa is, the larger the attribute set will be on average. Fig. 16 shows an example of random
policy with 10 attributes and pc = pAND = 0.5, and a random attribute set that fulfills it, both
created with the aforementioned method. Note that the created policy has many levels and differ-
ent Boolean operators, which recalls real-world access policies written by system administrators.
Note also that the created attribute set is suboptimal to decrypt, since for example the attribute set
{A, E} can fulfill the same policy by visiting fewer leaves and fewer internal nodes. Suboptimal
attribute sets are extremely likely to appear in a real-world scenario.

7.3. Realism of the Synthetic Policies

The best way to corroborate the plausibility of synthetic access policies would be to analyze
a dataset of real access policies. In this case we can extract and compare various parameters
like the depth of the policy tree, the frequency of the AND/OR gate, the distributions of certain
attributes, and many others. Unfortunately, as we said, companies and organizations are reluctant
to disclose such precious information. However, we provide an example to support the idea that
any synthetic policy can be mapped to a real world-policy. We do so by showing that it is
possible to give a realistic meaning to the randomly generated policy of Fig. 16, considering the
medical use case introduced in Section 4. Suppose that Pisa’s city hospital provides a patient
with a smart sensor which continuously monitor the glucose level in the blood. The same patient
has a smart insulin pump that can be activated by the data received from such a smart sensor.
Data produced by the smart sensor can be read also by the patient and by any physician that
works at the Pisa’s city hospital inside the cardiology department. Moreover, the patient gives
also his consent to the processing of personal data to researchers belonging to Pisa University
that participate in the “EuropeanSmartHealth” project in the “Diabetes” workpackage. Finally,
for security reasons, keys are renewed every year, so each key has an attribute associated to the
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Pairing Mod. exp. Mod. mul. Point-scalar mul. Point add.

Time (SW) 3093 ms 44 ms 1 ms 167 ms 5 ms
Time (HW) 3093 ms 44 ms 1 ms 74 ms 2 ms

Energy (SW) 140 µWh 2 µWh 0.05 µWh 10 µWh 0.2 µWh
Energy (HW) 140 µWh 2 µWh 0.05 µWh 3 µWh 0.1 µWh

GPSW decryption nL nL + nN − 1 nL − 1 - -
BSW decryption 2nL + 1 nL + nN − 1 nL + 1 - -
YCT decryption - - - 2nL + nN − 1 nL − 1

Table 2: Processing time of basic crypto operations on RE-Mote, and number of basic crypto operations needed in
decryption by the different schemes.

current year. Considering the CP-ABE paradigm, the policy that the smart sensor must enforce
on its produced data has the shape of the random policy in Fig. 16 (refer to the table on the
right of the figure for the attribute meanings). Furthermore, the randomly generated attribute set
describes a physician working at the Pisa city hospital inside the cardiology department, who is
also affiliated with the University of Pisa. This simple example demonstrate that the generated
policies and attribute sets, though random, can have a realistic interpretation.

7.4. Simplified Method for Memory-Constrained Devices
The aforementioned method allows us to evaluate the decryption performance of generic

ABE scheme in the average case. However, it requires to load the device under test with a high
number of policies and associated attribute sets. This is hardly feasible with memory-constrained
devices like ESP32 and RE-Mote. Fortunately, from our experience we noticed that the decryp-
tion efficiency of a scheme is analytically predictable given the number of basic cryptographic
operations performed (e.g., pairings, modular exponentiations, etc.), and their individual pro-
cessing time. We thus used a simplified method that involves first a benchmark of the basic
cryptographic operations, secondly the random generation of many couples of access policies
and attribute sets with the previously explained method, and finally the analytical computation
of the decryption performance with every such random couple.

To better understand how the decryption performance can be analytically computed, remind
that the decryption algorithm visits the policy tree in a bottom-up order, from the leaves to the
root. The algorithm visits only those nodes that are strictly necessary to visit the root. For
each visited node, the algorithm executes some basic elliptic-curve operations. In all the three
examined schemes, the number of the various basic operations are expressible in terms of the
number of visited leaves (nL) and the number of visited internal nodes (nN). Table 2 shows the
processing times and the energy consumption of the basic cryptographic operations involved in
decryption by the three schemes, measured on a RE-Mote with or without hardware acceleration.
Each value has been obtained by averaging on 100 independent replicas of the experiment. The
table shows also the number of different basic operations needed in decryption by the different
schemes. Since we are interested in the difference between a performance evaluation based on
the worst case and one based on the average case, we restrict our analysis on only one of the
examined boards: namely the RE-Mote board. Performing a similar analysis on the ESP32
board is straightforward. We omit it for the sake of brevity. Basing on the numbers of Table 2,
we applied the simplified method to benchmark the average decryption of the three schemes on
RE-Mote.

Figs. 17 and 18 show respectively the resulting average decryption time and average energy
consumption, compared to the worst-case ones, as they have been measured with the experiments
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Fig. 17: Average- and worst-case decryption time on
RE-Mote
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Fig. 18: Average- and worst-case decryption energy con-
sumption on RE-Mote

of the previous sections (see Fig. 12). Each point of the plot relative to the average decryption
time has been computed by averaging on 100,000 generated couples of random policies and
attribute sets. Note that only considering flat policies, like practically all the literature about
ABE scheme performance evaluation does [4, 12, 13, 20, 21], greatly overestimates the process-
ing time of the average decryption operation. The average decryption time shows also a slight
sublinear trend with respect to the number of attributes in the policy.

This is due to the presence of OR operators within the generated policies, which are instead
absent in a flat policy. Indeed, in order to visit an OR node the decryption algorithm must
first visit at least one of its children. The decryption algorithm will much probably visit the most
convenient child, which is the one having less descendant leaves, to save time. As the attributes of
the policy grow, also the number of OR operators grows, thus allowing the decryption algorithm
to further save time by visiting the most convenient child each time.

We can conclude that always considering the worst-case decryption, the current literature
significantly overestimates the processing time and energy.

However, such estimations are too harsh when considering the applicability of ABE in an IoT
context. In fact, realistic policies can be shaped around the needs and the capability of the devices
at disposal, as we showed before. We think that our framework is better in correctly estimating
the feasibility of ABE in an IoT context, since it takes into account also the flexibility and the
expressiveness of such a technique. Indeed, flexibility and expressiveness are two major features
that are hard to quantify, but they have a great impact on the overall system. For example, with
the GPSW scheme and 9-attribute policies, the energy consumption on RE-Mote of the average-
case decryption is 67% less than that of the worst-case decryption. This shows that, if policies
are well-thought and well-managed, ABE is far more performing than it is believed to be so far.

8. Conclusions

In this paper we carried out a performance evaluation of ABE in constrained IoT devices.
Specifically, we implemented three representative ABE schemes and tested their performance on
ESP32 and RE-Mote, two popular IoT rapid prototyping platforms. Our performance evaluation
showed that ABE has a significant impact on the lifetime of battery-powered devices, especially
when a high number of attributes (i.e., 20-50) is used in ciphertexts. However, if we assume to
employ fewer attributes (up to 10) and to leverage hardware elliptic-curve cryptographic accel-
eration, which is present on some platforms (e.g. RE-Mote), then ABE can indeed be adopted
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on devices with very limited memory and computing power. We also obtained a significant, yet
tolerable, battery lifetime reduction. To conclude, we presented a novel benchmark method that
allows us to evaluate the average decryption performance, i.e. time and energy consumption,
instead of the worst-case performance which is typically used by the literature. We exploited
such a method to complete our evaluation by estimating the average decryption time and en-
ergy on RE-Mote. We showed that by always considering the worst-case decryption, the current
literature significantly overestimates the processing time and energy.
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